Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
BMJ Glob Health ; 7(8)2022 08.
Article in English | MEDLINE | ID: covidwho-2001824

ABSTRACT

INTRODUCTION: Estimating COVID-19 cumulative incidence in Africa remains problematic due to challenges in contact tracing, routine surveillance systems and laboratory testing capacities and strategies. We undertook a meta-analysis of population-based seroprevalence studies to estimate SARS-CoV-2 seroprevalence in Africa to inform evidence-based decision making on public health and social measures (PHSM) and vaccine strategy. METHODS: We searched for seroprevalence studies conducted in Africa published 1 January 2020-30 December 2021 in Medline, Embase, Web of Science and Europe PMC (preprints), grey literature, media releases and early results from WHO Unity studies. All studies were screened, extracted, assessed for risk of bias and evaluated for alignment with the WHO Unity seroprevalence protocol. We conducted descriptive analyses of seroprevalence and meta-analysed seroprevalence differences by demographic groups, place and time. We estimated the extent of undetected infections by comparing seroprevalence and cumulative incidence of confirmed cases reported to WHO. PROSPERO: CRD42020183634. RESULTS: We identified 56 full texts or early results, reporting 153 distinct seroprevalence studies in Africa. Of these, 97 (63%) were low/moderate risk of bias studies. SARS-CoV-2 seroprevalence rose from 3.0% (95% CI 1.0% to 9.2%) in April-June 2020 to 65.1% (95% CI 56.3% to 73.0%) in July-September 2021. The ratios of seroprevalence from infection to cumulative incidence of confirmed cases was large (overall: 100:1, ranging from 18:1 to 954:1) and steady over time. Seroprevalence was highly heterogeneous both within countries-urban versus rural (lower seroprevalence for rural geographic areas), children versus adults (children aged 0-9 years had the lowest seroprevalence)-and between countries and African subregions. CONCLUSION: We report high seroprevalence in Africa suggesting greater population exposure to SARS-CoV-2 and potential protection against COVID-19 severe disease than indicated by surveillance data. As seroprevalence was heterogeneous, targeted PHSM and vaccination strategies need to be tailored to local epidemiological situations.


Subject(s)
COVID-19 , Adult , Africa/epidemiology , COVID-19/epidemiology , Child , Europe , Humans , SARS-CoV-2 , Seroepidemiologic Studies
2.
Influenza Other Respir Viruses ; 16(5): 803-819, 2022 09.
Article in English | MEDLINE | ID: covidwho-1895988

ABSTRACT

We aimed to estimate the household secondary infection attack rate (hSAR) of SARS-CoV-2 in investigations aligned with the WHO Unity Studies Household Transmission Investigations (HHTI) protocol. We conducted a systematic review and meta-analysis according to PRISMA 2020 guidelines. We searched Medline, Embase, Web of Science, Scopus and medRxiv/bioRxiv for "Unity-aligned" First Few X cases (FFX) and HHTIs published 1 December 2019 to 26 July 2021. Standardised early results were shared by WHO Unity Studies collaborators (to 1 October 2021). We used a bespoke tool to assess investigation methodological quality. Values for hSAR and 95% confidence intervals (CIs) were extracted or calculated from crude data. Heterogeneity was assessed by visually inspecting overlap of CIs on forest plots and quantified in meta-analyses. Of 9988 records retrieved, 80 articles (64 from databases; 16 provided by Unity Studies collaborators) were retained in the systematic review; 62 were included in the primary meta-analysis. hSAR point estimates ranged from 2% to 90% (95% prediction interval: 3%-71%; I 2 = 99.7%); I 2 values remained >99% in subgroup analyses, indicating high, unexplained heterogeneity and leading to a decision not to report pooled hSAR estimates. FFX and HHTI remain critical epidemiological tools for early and ongoing characterisation of novel infectious pathogens. The large, unexplained variance in hSAR estimates emphasises the need to further support standardisation in planning, conduct and analysis, and for clear and comprehensive reporting of FFX and HHTIs in time and place, to guide evidence-based pandemic preparedness and response efforts for SARS-CoV-2, influenza and future novel respiratory viruses.


Subject(s)
COVID-19 , Influenza, Human , Humans , SARS-CoV-2 , COVID-19/epidemiology , Family Characteristics , Pandemics
4.
Science ; 374(6566): 423-431, 2021 Oct 22.
Article in English | MEDLINE | ID: covidwho-1483977

ABSTRACT

The progression of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in Africa has so far been heterogeneous, and the full impact is not yet well understood. In this study, we describe the genomic epidemiology using a dataset of 8746 genomes from 33 African countries and two overseas territories. We show that the epidemics in most countries were initiated by importations predominantly from Europe, which diminished after the early introduction of international travel restrictions. As the pandemic progressed, ongoing transmission in many countries and increasing mobility led to the emergence and spread within the continent of many variants of concern and interest, such as B.1.351, B.1.525, A.23.1, and C.1.1. Although distorted by low sampling numbers and blind spots, the findings highlight that Africa must not be left behind in the global pandemic response, otherwise it could become a source for new variants.


Subject(s)
COVID-19/epidemiology , Epidemiological Monitoring , Genomics , Pandemics , SARS-CoV-2/genetics , Africa/epidemiology , COVID-19/transmission , COVID-19/virology , Genetic Variation , Humans , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL